matlab用时频工具箱tftb的tfrcw()做cwd分析的频率问题

首先tftb的Choi-Williams的tfrcw()函数是这样的:

function [tfr,t,f] = tfrcw(x,t,N,g,h,sigma,trace);
%TFRCW    Choi-Williams time-frequency distribution.
%    [TFR,T,F]=TFRCW(X,T,N,G,H,SIGMA,TRACE) computes the Choi-Williams  
%    distribution of a discrete-time signal X, or the
%    cross Choi-Williams representation between two signals. 
% 
%    X     : signal if auto-CW, or [X1,X2] if cross-CW.
%    T     : time instant(s)          (default : 1:length(X)).
%    N     : number of frequency bins (default : length(X)).
%    G     : time smoothing window, G(0) being forced to 1. 
%                                     (default : Hamming(N/10)).
%    H     : frequency smoothing window, H(0) being forced to 1.
%                                     (default : Hamming(N/4)). 
%    SIGMA : kernel width             (default : 1)
%    TRACE : if nonzero, the progression of the algorithm is shown
%                                        (default : 0).
%    TFR   : time-frequency representation. When called without 
%         output arguments, TFRCW runs TFRQVIEW.
%    F     : vector of normalized frequencies.
%
%    Example:
%     sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);  
%     g=tftb_window(9,'Kaiser'); h=tftb_window(27,'Kaiser'); 
%     t=1:128; tfrcw(sig,t,128,g,h,3.6,1);
% 
%    See also all the time-frequency representations listed in
%     the file CONTENTS (TFR*)

%    F. Auger, May-August 1994, July 1995.
%    Copyright (c) 1996 by CNRS (France).
%
%  This program is free software; you can redistribute it and/or modify
%  it under the terms of the GNU General Public License as published by
%  the Free Software Foundation; either version 2 of the License, or
%  (at your option) any later version.
%
%  This program is distributed in the hope that it will be useful,
%  but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%  GNU General Public License for more details.
%
%  You should have received a copy of the GNU General Public License
%  along with this program; if not, write to the Free Software
%  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

if (nargin == 0),
 error('At least 1 parameter required');
end;
[xrow,xcol] = size(x);
if (xcol==0)|(xcol>2),
 error('X must have one or two columns');
end

if (nargin <= 2),
 N=xrow;
elseif (N<0),
 error('N must be greater than zero');
elseif (2^nextpow2(N)~=N),
 fprintf('For a faster computation, N should be a power of two\n');
end;

hlength=floor(N/4); hlength=hlength+1-rem(hlength,2); 
glength=floor(N/10);glength=glength+1-rem(glength,2);

if (nargin == 1),
 t=1:xrow; g = tftb_window(glength); h = tftb_window(hlength); sigma = 1.0; trace = 0;
elseif (nargin == 2)|(nargin == 3),
 g = tftb_window(glength); h = tftb_window(hlength); sigma = 1.0; trace = 0;
elseif (nargin == 4),
 h = tftb_window(hlength); sigma = 1.0; trace = 0;
elseif (nargin == 5),
 sigma = 1.0; trace = 0;
elseif (nargin == 6),
 trace = 0;
end;

[trow,tcol] = size(t);
if (trow~=1),
 error('T must only have one row'); 
end; 

[grow,gcol]=size(g); Lg=(grow-1)/2;
if (gcol~=1)|(rem(grow,2)==0),
 error('G must be a smoothing window with odd length'); 
end;

[hrow,hcol]=size(h); Lh=(hrow-1)/2; h=h/h(Lh+1);
if (hcol~=1)|(rem(hrow,2)==0),
  error('H must be a smoothing window with odd length');
end;

if (sigma<=0.0),
 error('SIGMA must be strictly positive'); 
end;

normfac = 16.0*pi/sigma; spreadfac = 16.0/sigma;
taumax = min([round(N/2),Lh]); tau = 1:taumax; points = -Lg:Lg;
CWKer = exp(-kron( points.' .^2, 1.0 ./ (spreadfac*tau.^2)));
CWKer = diag(g) * CWKer;

tfr= zeros (N,tcol) ;  
if trace, disp('Choi-Williams distribution'); end;
for icol=1:tcol,
 ti= t(icol); taumax=min([ti+Lg-1,xrow-ti+Lg,round(N/2)-1,Lh]);
 if trace, disprog(icol,tcol,10); end;
 tfr(1,icol)= x(ti,1) .* conj(x(ti,xcol));

 for tau=1:taumax,
  points= -min([Lg,xrow-ti-tau]):min([Lg,ti-tau-1]);
  g2 = CWKer(Lg+1+points,tau); g2=g2/sum(g2);
  R=sum(g2 .* x(ti+tau-points,1) .* conj(x(ti-tau-points,xcol)));
  tfr(  1+tau,icol)=h(Lh+tau+1)*R;
  R=sum(g2 .* x(ti-tau-points,1) .* conj(x(ti+tau-points,xcol)));
  tfr(N+1-tau,icol)=h(Lh-tau+1)*R;
 end;

 tau=round(N/2); 
 if (ti<=xrow-tau)&(ti>=tau+1)&(tau<=Lh),
  points= -min([Lg,xrow-ti-tau]):min([Lg,ti-tau-1]);
  g2 = CWKer(Lg+1+points,tau); g2=g2/sum(g2);
  tfr(tau+1,icol) = 0.5 * ...
   (h(Lh+tau+1)*sum(g2 .* x(ti+tau-points,1) .* conj(x(ti-tau-points,xcol)))+...
    h(Lh-tau+1)*sum(g2 .* x(ti-tau-points,1) .* conj(x(ti+tau-points,xcol))));
 end;
end; 

clear CWKer;

if trace, fprintf('\n'); end;
tfr= fft(tfr); 
if (xcol==1), tfr=real(tfr); end ;

if (nargout==0),
 tfrqview(tfr,x,t,'tfrcw',g,h,sigma);
elseif (nargout==3),
 f=(0.5*(0:N-1)/N)';
end;

想请问,按函数介绍,输出的f是归一化频率吧?而且的确我改动N,无论N是多少,f总是在[0,0.5]范围内,但我在查找归一化频率的资料时有说归一化频率取在[0,1]的,也有[-0.5,0.5]的。想问,如果像这样设定在[0,0.5]的归一频率,是不是纵轴对应的频率就是数值*原始数据的采样频率?
还有,得出的分布总是N×t的大小,而且是上下对称的,是为什么呢(此张N=500)?

img

我的输入信号sig为96×1的single型数据,sig是实信号,sig经过100Hz低通滤波且低频特征明显;
原始采样频率为250Hz;
我想要得到信号的cwd分布,并且切割下1-32Hz的部分,而且想要频率轴每Hz对应一个点,即输出为32×96,频率分辨率为1,下面这样可以吗?

t=1:96;
g=window(@kaiser,9);
N=250;
%我困惑的地方就是这里,N按函数解释,是频率箱个数?想得到频率分辨率为1的话,N=原始采样频率,对吗?
[tfr,t,f] = tfrcw(x,t,N,g);
imagesc(t,f,abs(tfr(1:32,:)))
%截取图像中的1-32Hz部分可以直接这么对矩阵切割然后画图吗?
set(gca,'YDir','Normal')

又看到,常在对实信号做二次时频分析前,进行希尔伯特变换,这是为了什么呢?虽然我不知道为什么但我尝试了一下:

img

t=1:96;
g=window(@kaiser,9);
N=250;
%上图
[tfr1,t,f]=tfrcw((x,t,N,g);
imagesc(t,f,abs(tfr1))
set(gca,'YDir','Normal')
%下图
x2=hilbert(x);
[tfr2,t,f]=tfrcw((x2,t,N,g);
imagesc(t,f,abs(tfr2))
set(gca,'YDir','Normal')

经过hilbert变换的,的确图不对称了,但是这是什么意义呢?频率轴又怎么对应实际频率呢?
非常感谢大家!

我觉得:1.纵轴对应的频率就是数值0.5原始数据的采样频率,采样定理。
2.FFT变换完的数据就是对称的,一般频谱是取其结果的前1/2,结果中的对称应该也是这个原因吧。
3.没细研究过,感觉差不多。

%X:自动CW时的信号,或交叉CW时的[X1,X2]。

%T:时间瞬间(s)(默认值:1:长度(X))。

%N:频率箱数(默认值:长度(X))。

%G:时间平滑窗口,G(0)被强制为1。

%(默认值:Hamming(N/10))。

%H:频率平滑窗口,H(0)强制为1。

%(默认值:Hamming(N/4))。

%SIGMA:内核宽度(默认值:1)

%跟踪:如果非零,则显示算法的进程

%(默认值:0)。

%TFR:时频表示。调用时没有

%输出参数时,TFRCW运行TFRQVIEW。

%F:归一化频率向量。

15030218436@163.com