yolov5s 使用ASFF_Detect检测,预测头变为4×Detect,如何修改通道数使其匹配,主要代码已改好。

以下是报错问题及 yolo.py common.py yolov5s.yaml 修改的地方

报错:
RuntimeError: Given groups=1, weight of size [16, 64, 1, 1], expected input[1, 256, 16, 16] to have 64 channels, but got 256 channels instead

代码:

#yolo.py

class ASFF_Detect(nn.Module):   #add ASFFV5 layer and Rfb 
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=1, anchors=(), ch=(), multiplier=0.5,rfb=False,inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier,rfb=rfb)
        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier,rfb=rfb)
        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier,rfb=rfb)
        self.l3_fusion = ASFFV5(level=3, multiplier=multiplier,rfb=rfb)
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        result=[]
       
        result.append(self.l3_fusion(x))        
        result.append(self.l2_fusion(x))
        result.append(self.l1_fusion(x))
        result.append(self.l0_fusion(x))
        x=result      
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy, wh, conf = y.tensor_split((2, 4), 4)
                    xy = (xy * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf), 4)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        shape = 1, self.na, ny, nx, 2  # grid shape
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid(torch.arange(ny).to(d), torch.arange(nx).to(d), indexing='ij')
        else:
             yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d))
        grid = torch.stack((xv, yv), 2).expand(shape).float()
        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float()
        return grid, anchor_grid




#common.py
class ASFFV5(nn.Module):
    def __init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):
        """
        ASFF version for YoloV5 .
        different than YoloV3
        multiplier should be 1, 0.5
        which means, the channel of ASFF can be 
        512, 256, 128 -> multiplier=1
        256, 128, 64 -> multiplier=0.5
        For even smaller, you need change code manually.
        """
        super(ASFFV5, self).__init__()
        self.level = level
        self.dim = [int(1024*multiplier), int(512*multiplier),
                    int(256*multiplier),int(128*multiplier)]

 
 
        print(self.dim)
        



        self.inter_dim = self.dim[self.level]
        if level == 0:
            self.stride_level_1 = Conv(int(512*multiplier), self.inter_dim, 3, 2)
                
            self.stride_level_2 = Conv(int(256*multiplier), self.inter_dim, 3, 2)

            self.stride_level_3 = Conv(int(128*multiplier), self.inter_dim, 3, 2)            
                
            self.expand = Conv(self.inter_dim, int(1024*multiplier), 3, 1)
        elif level == 1:
            self.compress_level_0 = Conv(int(1024*multiplier), self.inter_dim, 1, 1)

            self.stride_level_2 = Conv(int(256*multiplier), self.inter_dim, 3, 2)

            self.stride_level_3 = Conv(int(128*multiplier), self.inter_dim, 3, 2)

            self.expand = Conv(self.inter_dim, int(512*multiplier), 3, 1)
        elif level == 2:
            self.compress_level_0 = Conv(int(1024*multiplier), self.inter_dim, 1, 1)

            self.compress_level_1 = Conv(int(512*multiplier), self.inter_dim, 1, 1)

            self.stride_level_3 = Conv(int(128*multiplier), self.inter_dim, 3, 2)

            self.expand = Conv(self.inter_dim, int(256*multiplier), 3, 1)
        elif level == 3:
            self.compress_level_0 = Conv(int(1024*multiplier), self.inter_dim, 1, 1)

            self.compress_level_1 = Conv(int(512*multiplier), self.inter_dim, 1, 1)   

            self.compress_level_2 = Conv(int(256*multiplier), self.inter_dim, 1, 1)  

            self.expand = Conv(self.inter_dim, int(128*multiplier), 3, 1)
        # when adding rfb, we use half number of channels to save memory
        compress_c = 8 if rfb else 16
        self.weight_level_0 = Conv(
            self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = Conv(
            self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = Conv(
            self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = Conv(
            self.inter_dim, compress_c, 1, 1)
        self.weight_levels = Conv(
            compress_c*3, 3, 1, 1)
        self.vis = vis

    def forward(self, x): #l,m,s
        """
        # 128, 256, 512
        512, 256, 128
        from small -> large
        """
        x_level_0=x[3] #l
        x_level_1=x[2] #m
        x_level_2=x[1] #s
        x_level_3=x[0] #s




        print('x_level_0: ', x_level_0.shape)
        print('x_level_1: ', x_level_1.shape)
        print('x_level_2: ', x_level_2.shape)
        print('x_level_3: ', x_level_3.shape)




        if self.level == 0:
            level_0_resized = x_level_0

            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter = F.max_pool2d(x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

            level_3_downsampled_inter = F.max_pool2d(x_level_3, 3, stride=4, padding=1)
            level_3_resized = self.stride_level_3(level_3_downsampled_inter)
            
        elif self.level == 1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')

            level_1_resized = x_level_1

            level_2_resized = self.stride_level_2(x_level_2)

            level_3_downsampled_inter = F.max_pool2d(x_level_3, 3, stride=2, padding=1)
            level_3_resized = self.stride_level_3(level_3_downsampled_inter)

        elif self.level == 2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')   

            x_level_1_compressed = self.compress_level_1(x_level_1)
            level_1_resized = F.interpolate(x_level_1_compressed, scale_factor=2, mode='nearest')

            level_2_resized = x_level_2

            level_3_resized = self.stride_level_3(x_level_3)

        elif self.level == 3:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized = F.interpolate(level_0_compressed, scale_factor=8, mode='nearest')  

            level_1_compressed = self.compress_level_1(x_level_1)
            level_1_resized = F.interpolate(level_1_compressed, scale_factor=4, mode='nearest')   

            x_level_2_compressed = self.compress_level_2(x_level_2)
            level_2_resized = F.interpolate(x_level_2_compressed, scale_factor=2, mode='nearest')

            level_3_resized = x_level_3


        print('level: {}, l1_resized: {}, l2_resized: {}, l3_resized: {}'.format(self.level,level_1_resized.shape, level_2_resized.shape,level_3_resized.shape))



        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        level_3_weight_v = self.weight_level_3(level_3_resized)




        print('level_0_weight_v: ', level_0_weight_v.shape)
        print('level_1_weight_v: ', level_1_weight_v.shape)
        print('level_2_weight_v: ', level_2_weight_v.shape)
        print('level_3_weight_v: ', level_3_weight_v.shape)

 
 
 
        levels_weight_v = torch.cat(
            (level_0_weight_v, level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] +\
            level_1_resized * levels_weight[:, 1:2, :, :] +\
            level_2_resized * levels_weight[:, 2:3 :, :] +\
            level_3_resized * levels_weight[:, 3:, :, :]


        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out 


#yolov5s.yaml
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [9,11,  21,19,  17,41]  # P3/8
  - [43,32,  39,70,  86,64]  # P4/16
  - [65,131,  134,130,  120,265]  # P5/32
  - [282,180,  247,354,  512,387]  # P6/64
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [128, False]],  # 21 (P3/8-small)   

   [-1, 1, Conv, [128, 3, 2]],
   [[-1, 18], 1, Concat, [1]],  # cat head P3
   [-1, 3, C3, [ 256, False ]],  # 24 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 27 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 30 (P5/32-large)

   [[21, 24, 27, 30], 1, ASFF_Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]