在轉換wts成trt時,trt有轉換出來,但還是有error,請指點迷津。
版本信息:
Jetson AGX Orin
ubuntu:20.04
CUDA:11.4
Cudnn:8.6
TensoRT:8.5.2.2
【以下回答由 GPT 生成】
我可以帮助你解决这个问题。首先,查看错误消息可以提供更多的细节,以便我们能更好地理解问题。请提供完整的错误消息,这将有助于我给出针对性的解决方案。
此外,请提供转换wts文件为TensorRT模型的具体步骤和代码,以便我可以更好地理解你的问题。如果没有代码,你可以提供关于你尝试的具体命令和步骤的描述。
只有在了解了更多细节后,我才能为你提供适当的解决方案。谢谢!
代碼如下:
#pragma once
#include <chrono>
#include "cuda_utils.h"
#include "logging.h"
#include "utils.h"
#define USE_FP16 // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.45
#define CONF_THRESH 0.25
#define BATCH_SIZE 1
// stuff we know about the network and the input/output blobs
static const int INPUT_H = Yolo::INPUT_H;
static const int INPUT_W = Yolo::INPUT_W;
static const int IMG_H = Yolo::IMG_H;
static const int IMG_W = Yolo::IMG_W;
static const int CLASS_NUM = 10;
static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1; // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_DET_NAME = "det";
const char* OUTPUT_SEG_NAME = "seg";
const char* OUTPUT_LANE_NAME = "lane";
static Logger gLogger;
ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, std::string& wts_name) {
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
assert(data);
std::map<std::string, Weights> weightMap = loadWeights(wts_name);
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
// yolop backbone
// auto focus0 = focus(network, weightMap, *shuffle->getOutput(0), 3, 32, 3, "model.0");
auto focus0 = focus(network, weightMap, *data, 3, 32, 3, "model.0");
auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), 64, 3, 2, 1, "model.1");
auto bottleneck_CSP2 = bottleneckCSP(network, weightMap, *conv1->getOutput(0), 64, 64, 1, true, 1, 0.5, "model.2");
auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), 128, 3, 2, 1, "model.3");
auto bottleneck_csp4 = bottleneckCSP(network, weightMap, *conv3->getOutput(0), 128, 128, 3, true, 1, 0.5, "model.4");
auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), 256, 3, 2, 1, "model.5");
auto bottleneck_csp6 = bottleneckCSP(network, weightMap, *conv5->getOutput(0), 256, 256, 3, true, 1, 0.5, "model.6");
auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), 512, 3, 2, 1, "model.7");
auto spp8 = SPP(network, weightMap, *conv7->getOutput(0), 512, 512, 5, 9, 13, "model.8");
// yolop head
auto bottleneck_csp9 = bottleneckCSP(network, weightMap, *spp8->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.9");
auto conv10 = convBlock(network, weightMap, *bottleneck_csp9->getOutput(0), 256, 1, 1, 1, "model.10");
float *deval = reinterpret_cast<float*>(malloc(sizeof(float) * 256 * 2 * 2));
for (int i = 0; i < 256 * 2 * 2; i++) {
deval[i] = 1.0;
}
Weights deconvwts11{ DataType::kFLOAT, deval, 256 * 2 * 2 };
IDeconvolutionLayer* deconv11 = network->addDeconvolutionNd(*conv10->getOutput(0), 256, DimsHW{ 2, 2 }, deconvwts11, emptywts);
deconv11->setStrideNd(DimsHW{ 2, 2 });
deconv11->setNbGroups(256);
weightMap["deconv11"] = deconvwts11;
ITensor* inputTensors12[] = { deconv11->getOutput(0), bottleneck_csp6->getOutput(0) };
auto cat12 = network->addConcatenation(inputTensors12, 2);
auto bottleneck_csp13 = bottleneckCSP(network, weightMap, *cat12->getOutput(0), 512, 256, 1, false, 1, 0.5, "model.13");
auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), 128, 1, 1, 1, "model.14");
Weights deconvwts15{ DataType::kFLOAT, deval, 128 * 2 * 2 };
IDeconvolutionLayer* deconv15 = network->addDeconvolutionNd(*conv14->getOutput(0), 128, DimsHW{ 2, 2 }, deconvwts15, emptywts);
deconv15->setStrideNd(DimsHW{ 2, 2 });
deconv15->setNbGroups(128);
ITensor* inputTensors16[] = { deconv15->getOutput(0), bottleneck_csp4->getOutput(0) };
auto cat16 = network->addConcatenation(inputTensors16, 2);
auto bottleneck_csp17 = bottleneckCSP(network, weightMap, *cat16->getOutput(0), 256, 128, 1, false, 1, 0.5, "model.17");
IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]);
auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), 128, 3, 2, 1, "model.18");
ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) };
auto cat19 = network->addConcatenation(inputTensors19, 2);
auto bottleneck_csp20 = bottleneckCSP(network, weightMap, *cat19->getOutput(0), 256, 256, 1, false, 1, 0.5, "model.20");
IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]);
auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), 256, 3, 2, 1, "model.21");
ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) };
auto cat22 = network->addConcatenation(inputTensors22, 2);
auto bottleneck_csp23 = bottleneckCSP(network, weightMap, *cat22->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.23");
IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]);
auto detect24 = addYoLoLayer(network, weightMap, det0, det1, det2);
detect24->getOutput(0)->setName(OUTPUT_DET_NAME);
auto conv25 = convBlock(network, weightMap, *cat16->getOutput(0), 128, 3, 1, 1, "model.25");
// upsample 26
Weights deconvwts26{ DataType::kFLOAT, deval, 128 * 2 * 2 };
IDeconvolutionLayer* deconv26 = network->addDeconvolutionNd(*conv25->getOutput(0), 128, DimsHW{ 2, 2 }, deconvwts26, emptywts);
deconv26->setStrideNd(DimsHW{ 2, 2 });
deconv26->setNbGroups(128);
auto bottleneck_csp27 = bottleneckCSP(network, weightMap, *deconv26->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.27");
auto conv28 = convBlock(network, weightMap, *bottleneck_csp27->getOutput(0), 32, 3, 1, 1, "model.28");
// upsample 29
Weights deconvwts29{ DataType::kFLOAT, deval, 32 * 2 * 2 };
IDeconvolutionLayer* deconv29 = network->addDeconvolutionNd(*conv28->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts29, emptywts);
deconv29->setStrideNd(DimsHW{ 2, 2 });
deconv29->setNbGroups(32);
auto conv30 = convBlock(network, weightMap, *deconv29->getOutput(0), 16, 3, 1, 1, "model.30");
auto bottleneck_csp31 = bottleneckCSP(network, weightMap, *conv30->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.31");
// upsample32
Weights deconvwts32{ DataType::kFLOAT, deval, 8 * 2 * 2 };
IDeconvolutionLayer* deconv32 = network->addDeconvolutionNd(*bottleneck_csp31->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts32, emptywts);
deconv32->setStrideNd(DimsHW{ 2, 2 });
deconv32->setNbGroups(8);
auto conv33 = convBlock(network, weightMap, *deconv32->getOutput(0), 2, 3, 1, 1, "model.33");
// segmentation output
ISliceLayer *slicelayer = network->addSlice(*conv33->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 2, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 });
auto segout = network->addTopK(*slicelayer->getOutput(0), TopKOperation::kMAX, 1, 1);
segout->getOutput(1)->setName(OUTPUT_SEG_NAME);
auto conv34 = convBlock(network, weightMap, *cat16->getOutput(0), 128, 3, 1, 1, "model.34");
// upsample35
Weights deconvwts35{ DataType::kFLOAT, deval, 128 * 2 * 2 };
IDeconvolutionLayer* deconv35 = network->addDeconvolutionNd(*conv34->getOutput(0), 128, DimsHW{ 2, 2 }, deconvwts35, emptywts);
deconv35->setStrideNd(DimsHW{ 2, 2 });
deconv35->setNbGroups(128);
auto bottleneck_csp36 = bottleneckCSP(network, weightMap, *deconv35->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.36");
auto conv37 = convBlock(network, weightMap, *bottleneck_csp36->getOutput(0), 32, 3, 1, 1, "model.37");
// upsample38
Weights deconvwts38{ DataType::kFLOAT, deval, 32 * 2 * 2 };
IDeconvolutionLayer* deconv38 = network->addDeconvolutionNd(*conv37->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts38, emptywts);
deconv38->setStrideNd(DimsHW{ 2, 2 });
deconv38->setNbGroups(32);
auto conv39 = convBlock(network, weightMap, *deconv38->getOutput(0), 16, 3, 1, 1, "model.39");
auto bottleneck_csp40 = bottleneckCSP(network, weightMap, *conv39->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.40");
// upsample41
Weights deconvwts41{ DataType::kFLOAT, deval, 8 * 2 * 2 };
IDeconvolutionLayer* deconv41 = network->addDeconvolutionNd(*bottleneck_csp40->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts41, emptywts);
deconv41->setStrideNd(DimsHW{ 2, 2 });
deconv41->setNbGroups(8);
auto conv42 = convBlock(network, weightMap, *deconv41->getOutput(0), 2, 3, 1, 1, "model.42");
// lane-det output
ISliceLayer *laneSlice = network->addSlice(*conv42->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 2, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 });
auto laneout = network->addTopK(*laneSlice->getOutput(0), TopKOperation::kMAX, 1, 1);
laneout->getOutput(1)->setName(OUTPUT_LANE_NAME);
// detection output
network->markOutput(*detect24->getOutput(0));
// segmentation output
network->markOutput(*segout->getOutput(1));
// lane output
network->markOutput(*laneout->getOutput(1));
assert(false);
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(2L * (1L << 30)); // 2GB
#if defined(USE_FP16)
config->setFlag(BuilderFlag::kFP16);
#endif
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*)(mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, std::string& wts_name) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, wts_name);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
config->destroy();
}
void doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* det_output, int* seg_output, int* lane_output, int batchSize) {
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
// CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
}
void doInferenceCpu(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* input, float* det_output, int* seg_output, int* lane_output, int batchSize) {
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
}
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, std::string& img_dir) {
if (argc < 4) return false;
if (std::string(argv[1]) == "-s" && argc == 4) {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
} else if (std::string(argv[1]) == "-d" && argc == 4) {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
} else {
return false;
}
return true;
}