关于#python#的问题:我怎么让这代码在GPU上运行啊

我怎么能让这代码在GPU上运行,该怎么改呢?我试了好多方法了。


#主程序文件,用于训练模型
import argparse
import os
import numpy as np
import math
os.environ["CUDA_VISIBLE_DEVICES"] = '0'



 
# import torchvision.transforms as transforms
from torchvision.utils import save_image
 
from torch.utils.data import DataLoader
from torchvision import datasets, models, transforms
from torch.autograd import Variable
 
import torch.nn as nn
import torch.nn.functional as F
from tools.my_dataset import myDataset
import torch
 
os.makedirs("train_images", exist_ok=True)
os.makedirs("save_Model", exist_ok=True)
PATH='E:\GAN'
 
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=600, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=4, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=500, help="size of each train_images dimension")
parser.add_argument("--channels", type=int, default=3, help="number of train_images channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen train_images samples")
opt = parser.parse_args()
print(opt)
 
img_shape = (opt.channels, opt.img_size, opt.img_size)
 
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
 
        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers
 
        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )
 
    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img
 
 
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
 
        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )
 
    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)
 
        return validity
 
 
# 损失函数
adversarial_loss = torch.nn.BCELoss()
 
#定义生成器和判别器
generator = Generator()
discriminator = Discriminator()
 
 
dataset = r'E:\GAN'
train_data_directory = os.path.join(dataset, 'train_data')
 
image_transforms = {
    'train_data': transforms.Compose([
        transforms.Resize([opt.img_size,opt.img_size]),
        transforms.ToTensor(),
        ])
    }
 
data = {
    'train_data': myDataset(data_dir=train_data_directory,
                            transform=image_transforms['train_data'])
    }
 
dataloader = DataLoader(data['train_data'], batch_size=opt.batch_size, shuffle=True)
train_data_data_size = len(data['train_data'])
print('train_size: {:4d}  '.format(train_data_data_size))
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
 
Tensor =  torch.FloatTensor
 
# ----------
#  开始训练
# ----------
ans=0
for epoch in range(opt.n_epochs):
    # for i, (imgs, _) in enumerate(dataloader):
    for i, imgs in enumerate(dataloader):
        #真实图像来自于train_data
        # Adversarial ground truths
        valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
        fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)
 
        # 真实图像
        real_imgs = Variable(imgs.type(Tensor))
 
        # -----------------
        #  训练生成器
        # -----------------
 
        optimizer_G.zero_grad()
 
        # 噪声输入
        z = Variable(Tensor(np.random.normal(0, 3, (imgs.shape[0], opt.latent_dim))))
 
        # 生成图像
        gen_imgs = generator(z)
 
        # 计算G_损失
        aa = discriminator(gen_imgs)
        g_loss = adversarial_loss(aa, valid)
 
        g_loss.backward()
        optimizer_G.step()
 
        # ---------------------
        #  训练判别器
        # ---------------------
 
        optimizer_D.zero_grad()
 
        # 测量判别器检测假图像的能力
        bb = discriminator(real_imgs)
        real_loss = adversarial_loss(bb, valid)
        # 此处需要注意,detach()是为了截断梯度流,不计算生成网络的损失,
        # 因为d_loss包含了fake_loss,回传的时候如果不做处理,默认会计算generator的梯度,
        # 而这里只需要计算判别网络的梯度,更新其权重值,生成网络保持不变即可。
        fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
        d_loss = (real_loss + fake_loss) / 2
 
        d_loss.backward()
        optimizer_D.step()
 
        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )
 
        batches_done = epoch * len(dataloader) + i
        if batches_done % 4000 == 0:
            save_image(gen_imgs.data[:25], "E:\GAN\\train_images\%d.png" % batches_done, nrow=5, normalize=True)
            #保存模型
            ans+=1
            torch.save(generator, './save_Model/generator%d.pth' %ans)
不知道你这个问题是否已经解决, 如果还没有解决的话:

如果你已经解决了该问题, 非常希望你能够分享一下解决方案, 写成博客, 将相关链接放在评论区, 以帮助更多的人 ^-^

要将代码在GPU上运行,你需要进行以下更改:

在代码的开始部分,添加以下代码将torch转换为GPU操作:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator.to(device)
discriminator.to(device)
adversarial_loss.to(device)
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor

更改数据加载器的参数pin_memory=True,以启用数据在GPU上的预加载:

dataloader = DataLoader(data['train_data'], batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu, pin_memory=True)

在循环的开始部分,将输入和目标张量移动到GPU上:

real_imgs = real_imgs.to(device)
imgs = imgs.to(device)
valid = valid.to(device)
fake = fake.to(device)

在生成器和判别器的优化器的定义中,添加参数device,以启用模型参数在GPU上的更新:

optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_G.to(device)
optimizer_D.to(device)

在训练循环的最后,将生成的图像张量移动到CPU上,并使用save_image()保存图像:

save_image(gen_imgs.data[:25].cpu(), "E:\GAN\\train_images\%d.png" % batches_done, nrow=5, normalize=True)

请注意,为了在GPU上运行代码,你的系统必须具有支持CUDA的GPU,并且已正确安装CUDA驱动程序和PyTorch的CUDA版本。如若有用,还望博友采纳!