如何解决CUDA编程结果出错?(语言-c++)


#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cuda.h>
#include <iostream>
#include <math.h>
#include <stdio.h>
#include <complex.h>
#include "cuComplex.h"
#include <typeinfo>   //输出变量类型所需头文件
#include <time.h>

typedef cuDoubleComplex complexd;
using namespace std;
#define pi acos(-1)
#define CHECK(res) if(res!=cudaSuccess){exit(-1);}

int  N = 70;  //阵元个数
int Len = 2400;   //采样点数
int theta_N = 1800;  //角度步进数


__device__ __host__ complexd operator*(complexd a, complexd b) { return cuCmul(a,b); } 
__device__ __host__ complexd operator+(complexd a, complexd b) { return cuCadd(a,b); } 
__device__ __host__ complexd operator/(complexd a, complexd b) { return cuCdiv(a,b); } 

__device__ __host__ complexd exp_(complexd arg)
{
   complexd res;    //定义一个复数
   double s, c;     
   double e = exp(arg.x);   
   sincos(arg.y, &s, &c);
   res.x = c * e;
   res.y = s * e;
   return res;
}

/*  CUDA核函数  */
__global__ void beamforming_nb(complexd* sig_out, complexd* sig_in,complexd* time_delay,int theta_N,int Len,int N)
{
    int row = threadIdx.y + blockDim.y * blockIdx.y;
    int col = threadIdx.x + blockDim.x * blockIdx.x;
    complexd temp;
    complexd add_;
    if (row < theta_N && col < Len) 
    {
        for (int i = 0; i < N; i++) 
        {
            //theta_N x Len大小的矩阵sig_out = time_delay矩阵的row行i列 X sig_in矩阵i行col列
            add_ = time_delay[row * N + i] * sig_in[col + i * Len];
            __syncthreads();
            temp = temp + add_;  
            __syncthreads();
        }
        sig_out[row * Len + col] = temp;
        temp.x = 0;
        temp.y = 0;
    }

}

 
int main(int argc, char ** argv)
{
    /*  初始参数定义  */
    const double c = 1500;  //介质声速
    const double T = 1;     //采样时长
    const int FS = 2400;    //采样频率
    auto LEN = T*FS;        //采样点数
    double t[Len];          //时间长度
    for(int i = 0;i<Len;i++)
    {
        t[i] = i/LEN;
        //cout <<t[i]<<endl;    //验证通过
    }
    const double f0 = 300;  //频率为300
    const double d = 0.27;  //传感器间距为0.27m
    const double deg2rad = pi/180;      // cos是弧度
    const double theta = 60;            //目标方位角角度制
    const double theta_rad = theta * deg2rad;  //目标方位角弧度制
    cudaError_t res;

    /*  原始信号定义  */
    complexd sig_[Len];      //原始信号列表,长度为:采样频率*采样时间

    for(int i = 0;i<Len;i++)
    {
        complexd temp{0,2*pi*f0*t[i]};
        sig_[i] = exp_(temp);      //原始信号
        //cout << cuCreal(sig_[i]) << '+' << cuCimag(sig_[i])<< 'i' <<'\n';     //验证通过
    }
     
    /*  加入驾驶向量  */
    complexd sig[N*Len];         //定义未加入噪声信号                   
 
    for(int i = 0;i<N;i++)
    {
        complexd steer{0,2*pi*f0*cos(theta_rad)*i*d/c};  //驾驶向量
        // cout << cuCreal(exp_(steer)) << '+' << cuCimag(exp_(steer))<< 'i' << endl;   //验证通过
        for(int j = 0;j<Len;j++)
        {
            sig[i*Len+j] = sig_[j] * exp_(steer);     //未加入噪声信号.N*Len
            // cout << cuCreal(sig[i*Len+j]) << '+' << cuCimag(sig[i*Len+j])<< 'i' <<'\n';  //验证通过
        }
    }

    /*  计算并加入theta_stp  */
    double theta_n = 1800;
    complexd t_delay[theta_N*N];
    for(int i = 0;i<theta_N;i++)
    {
        for(int j = 0 ;j<N;j++)
        {
            complexd tao{0,j*2*pi*f0*cos(i*(180/theta_n)*deg2rad)*d/c};
            t_delay[i*N + j] = exp_(cuConj(tao)); //第i个角度下的N个补偿,最终得到theta_N*N矩阵
        }
    }

    /*  CPU计算    */
    double ttt;  
    clock_t at, bt;
    at = clock();
    complexd *h_pt;
    h_pt = (complexd *)malloc(theta_N*Len*sizeof(complexd));
    complexd h_temp;
    for(int i = 0 ; i < theta_N; i ++ )
    {
        for(int j = 0; j < Len ;  j ++)
        {
            for(int k = 0 ; k <N; k ++)
             {
                h_temp = h_temp + t_delay[i * N + k] * sig[k * Len + j];
            }
         h_pt[i * Len + j] = h_temp;
           h_temp.x = 0;
            h_temp.y = 0;

        }

     }
    bt = clock();
    ttt = double(bt-at)/CLOCKS_PER_SEC;
    cout << ttt << "s" << endl;


    
    /*  CUDA加速  */
    complexd *sig_in;
    complexd *time_delay;
    complexd *sig_out;


    res = cudaMalloc((void**)&sig_in,N*Len*sizeof(complexd));CHECK(res)
    res = cudaMalloc((void**)&sig_out,theta_N*Len*sizeof(complexd));CHECK(res)
    res = cudaMalloc((void**)&time_delay,theta_N*N*sizeof(complexd));CHECK(res)

    res = cudaMemcpy(sig_in,sig,N*Len*sizeof(complexd),cudaMemcpyHostToDevice);CHECK(res)
    res = cudaMemcpy(time_delay,t_delay,theta_N*N*sizeof(complexd),cudaMemcpyHostToDevice);CHECK(res)

    dim3 threadsPerBlocks(32,32);  //先尝试角度采样点个数与采样频率相同的情况
    dim3 numBlocks((Len)/threadsPerBlocks.x,(theta_N)/threadsPerBlocks.y);

    /*
    Jetson Orin 模块包含以下内容:NVIDIA Ampere架构GPU,
    具有多达2048个CUDA 核、多达64个Tensor核多达12个Arm A78AE CPU核
    */

    double tt;  
    clock_t a, b;
       a = clock();
    beamforming_nb<<<numBlocks,threadsPerBlocks>>>(sig_out,sig_in,time_delay,theta_N,Len,N);
    cudaDeviceSynchronize();
    b = clock();
    tt = double(b-a)/CLOCKS_PER_SEC;
    cout << tt << "s" << endl;


    complexd *pt_sig = NULL;  //定义输出列表

    pt_sig = (complexd*)malloc(theta_N*Len*sizeof(complexd));   //输出信息
    res = cudaMemcpy(pt_sig,sig_out,theta_N*Len*sizeof(complexd),cudaMemcpyDeviceToHost);CHECK(res)




    cout << cuCreal(pt_sig[(2399)])<< '+' << cuCimag(pt_sig[(2399)]) << 'i' << '\n';
    cout << cuCreal(h_pt[(2400-1)])<< '+' << cuCimag(h_pt[(2400-1)]) << 'i' << '\n';
    // -3.74895500 + 1.3897567i

    cudaFree(sig_in);
    cudaFree(time_delay);
    cudaFree(sig_out);
    free(pt_sig);
    free(h_pt);
    return 0;
}

输出结果
24.4865s
0.000353s
-3.74896+13.8978i
-3.74896+1.38976i

想请问一下,为什么通过GPU加速计算的结果和实际上通过CPU计算的结果为什么会有不同,通过验证观察发现:部分数据是相等的,但是就比如说输出的第2400个数据就是不等的,现在可以保证CPU端计算的结果是正确的,但是无法找到GPU计算出错的原因,希望大家能够给予帮助!

目前已经解决了问题,问题主要出在线程分配这个地方,theta_N和Len分别为1800和2400,线程块如果取(32,32,1)的话,1800/32 = 56.25,系统将取56,x方向上线程索引(即矩阵的行索引)数目将少于theta_N,计算将会出现错误。之后从网上找了相关教程,将第161行修改为:dim3 numBlocks((Len + threadPerBlocks.x - 1)/threadsPerBlocks.x,(theta_N + threadPerBlocks.y - 1)/threadsPerBlocks.y),这时(1800+32 - 1)/32 = 57.21,发现计算还是有错,因此判断,必须要保证矩阵的行列数能够被线程块除尽才能保证运算正确。因此最后重写了代码:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cuda.h>
#include <iostream>
#include <math.h>
#include <stdio.h>
#include <complex.h>
#include "cuComplex.h"
#include <typeinfo>   //输出变量类型所需头文件
#include <time.h>
 
typedef cuDoubleComplex complexd;
using namespace std;
#define pi acos(-1)
#define CHECK(res) if(res!=cudaSuccess){exit(-1);}
 
int  N = 70;  //阵元个数
int Len = 2400;   //采样点数
int theta_N = 1800;  //角度步进数
 
 
__device__ __host__ complexd operator*(complexd a, complexd b) { return cuCmul(a,b); } 
__device__ __host__ complexd operator+(complexd a, complexd b) { return cuCadd(a,b); } 
__device__ __host__ complexd operator/(complexd a, complexd b) { return cuCdiv(a,b); } 
// __device__ __host__ complexd operator+=(complexd a, complexd b)   //存在问题,但是不会修改
// {
//     complexd res;
//     res = cuCadd(a,b);
//     return res;
// }
 
__device__ __host__ complexd exp_(complexd arg)
{
   complexd res;    //定义一个复数
   double s, c;     
   double e = exp(arg.x);   
   sincos(arg.y, &s, &c);
   res.x = c * e;
   res.y = s * e;
   return res;
}
 
/*  CUDA核函数  */
__global__ void beamforming_nb(complexd* sig_out, complexd* sig_in,complexd* time_delay,int theta_N,int Len,int N)
{
    int row = threadIdx.x + blockDim.x * blockIdx.x;
    int col = threadIdx.y + blockDim.y * blockIdx.y;     //*:CUDA中的索引逻辑顺序为X>Y>Z
 
    // dim3 threadsPerBlocks(32, 32);  
    // dim3 numBlocks((theta_N + threadsPerBlocks.x -1)/threadsPerBlocks.x,(Len + threadsPerBlocks.y -1)/threadsPerBlocks.y);  
 
    complexd temp{0,0};
    complexd add_{0,0};
    if (row < theta_N && col < Len)   // 试试使用两个if呢?
    {
        for (int i = 0; i < N; i++) 
        {
            //theta_N x Len大小的矩阵sig_out = time_delay矩阵的row行i列 X sig_in矩阵i行col列
            temp = temp + time_delay[row * N + i] * sig_in[col + i * Len];
        }
        sig_out[row * Len + col] = temp;
        temp = add_;
    }
    /*  
        存在问题:
        1. 解决theta_N*N矩阵和N*Len矩阵的并行计算问题;   答:已解决,用if (row < theta_N && col < Len)替换外围两个for循环,详见success.cu
        2. 数组大小超过单个block所含i线程大小的计算;  答:暂时不用考虑
        3. CUDA的blocks和线程调用;   答:需要进一步学习。
        4. 让更多的计算容纳到CUDA计算核中;   
        5. CUDA的核计算中如何做到循环。   答:使用if实现
    */
}
 
 
int main(int argc, char ** argv)
{
    /*  初始参数定义  */
    const double c = 1500;  //介质声速
    //const int N = 70;     //传感器数量
    const double T = 1;     //采样时长
    const int FS = 2400;    //采样频率
    auto LEN = T*FS;        //采样点数
    double t[Len];          //时间长度
    for(int i = 0;i<Len;i++)
    {
        t[i] = i/LEN;
        // cout <<t[i]<<endl;    //验证通过
    }
    const double f0 = 300;  //频率为300
    const double d = 0.27;  //传感器间距为0.27m
    const double deg2rad = pi/180;      // cos是弧度
    // cout << pi << endl; 验证通过
    const double theta = 60;            //目标方位角角度制
    const double theta_rad = theta * deg2rad;  //目标方位角弧度制
    cudaError_t res;
 
    /*  原始信号定义  */
    complexd sig_[Len];      //原始信号列表,长度为:采样频率*采样时间
 
    for(int i = 0;i<Len;i++)
    {
        complexd temp{0,2*pi*f0*t[i]};
        sig_[i] = exp_(temp);      //原始信号
        // cout << cuCreal(sig_[i]) << '+' << cuCimag(sig_[i])<< 'i' <<'\n';     //验证通过
    }
     
    /*  加入驾驶向量  */
    complexd sig[N*Len];         //定义未加入噪声信号                   
 
    for(int i = 0;i<N;i++)
    {
        complexd steer{0,2*pi*f0*cos(theta_rad)*i*d/c};  //驾驶向量
        // cout << cuCreal(exp_(steer)) << '+' << cuCimag(exp_(steer))<< 'i' << endl;   //验证通过
        for(int j = 0;j<Len;j++)
        {
            sig[i*Len+j] = sig_[j] * exp_(steer);     //未加入噪声信号.N*Len
            // cout << cuCreal(sig[i*Len+j]) << '+' << cuCimag(sig[i*Len+j])<< 'i' <<'\n';  //验证通过
        }
    }
 
    /*  加入噪声   */ 
 
 
    /*  计算并加入theta_stp  */
    double theta_n = 1800;
    complexd t_delay[theta_N*N];
    for(int i = 0;i<theta_N;i++)
    {
        for(int j = 0 ;j<N;j++)
        {
            complexd tao{0,j*2*pi*f0*cos(i*(180/theta_n)*deg2rad)*d/c};
            // cout << j*2*pi*f0*cos(i*(180/theta_n)*deg2rad)*d/c << '\t' <<j <<endl;   //验证通过
            t_delay[i*N + j] = exp_(cuConj(tao)); //第i个角度下的N个补偿,最终得到theta_N*N矩阵
            // cout << cuCreal(exp_(cuConj(tao))) << '+' << cuCimag(exp_(cuConj(tao)))<< 'i' <<'\n';  //验证通过
        }
    }
 
    /*  CPU计算    */
    double ttt;  
    clock_t at, bt;
       at = clock();
    complexd *h_pt;
    h_pt = (complexd *)malloc(theta_N*Len*sizeof(complexd));
    complexd h_temp{0,0};
    complexd a_temp{0,0};
    for(int i = 0 ; i < theta_N; i ++ )
    {
        for(int j = 0; j < Len ;  j ++)
        {
            for(int k = 0 ; k <N; k ++)
            {
                h_temp = h_temp + t_delay[i * N + k] * sig[k * Len + j];   // i行k列 x k行j列 = i行j列
            }
            h_pt[i * Len + j] = h_temp;
            h_temp = a_temp;
        }
    }
    bt = clock();
    ttt = double(bt-at)/CLOCKS_PER_SEC;
    cout << ttt << "s" << endl;
 
 
    
    /*  CUDA加速  */
    complexd *sig_in;
    complexd *time_delay;
    complexd *sig_out;
 
 
    res = cudaMalloc((void**)&sig_in,N*Len*sizeof(complexd));CHECK(res)
    res = cudaMalloc((void**)&sig_out,theta_N*Len*sizeof(complexd));CHECK(res)
    res = cudaMalloc((void**)&time_delay,theta_N*N*sizeof(complexd));CHECK(res)
 
    res = cudaMemcpy(sig_in,sig,N*Len*sizeof(complexd),cudaMemcpyHostToDevice);CHECK(res)
    res = cudaMemcpy(time_delay,t_delay,theta_N*N*sizeof(complexd),cudaMemcpyHostToDevice);CHECK(res)
 
    dim3 threadsPerBlocks(24,24);  
    // dim3 numBlocks((Len+threadsPerBlocks.x-1)/threadsPerBlocks.x,(theta_N+threadsPerBlocks.y-1)/threadsPerBlocks.y);
    dim3 numBlocks((theta_N)/threadsPerBlocks.x,(Len)/threadsPerBlocks.y);
    // cout << numBlocks.x << "," << numBlocks.y << endl;
 
    /*
    Jetson Orin 模块包含以下内容:NVIDIA Ampere架构GPU,
    具有多达2048个CUDA 核、多达64个Tensor核多达12个Arm A78AE CPU核
    */
 
    double tt;  
    clock_t a, b;
       a = clock();
    beamforming_nb<<<numBlocks,threadsPerBlocks>>>(sig_out,sig_in,time_delay,theta_N,Len,N);   // (grid, block)
    cudaDeviceSynchronize();
    b = clock();
    tt = double(b-a)/CLOCKS_PER_SEC;
    cout << tt << "s" << endl;
 
 
    complexd *pt_sig = NULL;  //定义输出列表
 
    pt_sig = (complexd*)malloc(theta_N*Len*sizeof(complexd));   //输出信息
    res = cudaMemcpy(pt_sig,sig_out,theta_N*Len*sizeof(complexd),cudaMemcpyDeviceToHost);CHECK(res)
 
    bool is_right = true;
    for(int i = 0 ; i <theta_N;i++)
    {
        for(int j = 0 ; j < Len;j++)
        {
            // if(cuCreal(pt_sig[(i*Len+j)]) != cuCreal(h_pt[i*Len+j]) || cuCimag(pt_sig[(i*Len+j)]) != cuCimag(h_pt[i*Len+j]) )
            if(((cuCreal(pt_sig[(i*Len+j)]) - cuCreal(h_pt[(i*Len+j)])) > 1e-8) || ((cuCimag(pt_sig[(i*Len+j)]) - cuCimag(h_pt[(i*Len+j)])) > 1e-8))
            {
                is_right = false;
                // cout << "GPU:" << cuCreal(pt_sig[(i*Len+j)]) - cuCreal(h_pt[(i*Len+j)])<< '+' << cuCimag(pt_sig[(i*Len+j)]) - cuCimag(h_pt[(i*Len+j)])<< 'i' << '\n';            
                cout << "第" << i*Len+j << "个" << "数据不正确" << endl;
                cout << "GPU:" << cuCreal(pt_sig[(i*Len+j)])<< '+' << cuCimag(pt_sig[(i*Len+j)]) << 'i' << '\n';
                cout << "CPU:" << cuCreal(h_pt[(i*Len+j)])<< '+' << cuCimag(h_pt[(i*Len+j)]) << 'i' << '\n';
            }            
        }
    }
 
    printf("The result is %s!\n",is_right?"right":"false");
    cout << cuCreal(pt_sig[(0)])<< '+' << cuCimag(pt_sig[(0)]) << 'i' << '\n';
    cout << cuCreal(h_pt[(0)])<< '+' << cuCimag(h_pt[(0)]) << 'i' << '\n';
 
    cudaFree(sig_in);
    cudaFree(time_delay);
    cudaFree(sig_out);
    free(pt_sig);
    free(h_pt);
    return 0;
}

主要的改动点是:线程块大小和网格大小的重新设定,将col和row的索引修改以便符合逻辑,去掉了__syncthreads()(当初以为是线程同步问题导致的计算错误),最后还是和CPU计算结果进行了比较,结果最终显示正确。

只能是自己一步步调试分析,数据不对肯定是哪里逻辑不对,或逻辑设计正确但编码不对。https://blog.csdn.net/wd1603926823/article/details/77451433 之前我也是慢慢调的OCL和CUDA都是如此,算法原理一致下CPU与cuda版本肯定完全一致 https://blog.csdn.net/wd1603926823/article/details/120157432

有时不将“调用函数名字+各参数值,进入函数后各参数值,中间变量值,退出函数前准备返回的值,返回函数到调用处后函数名字+各参数值+返回值”这些信息写日志到文件中是无论如何也发现不了问题在哪里的,包括捕获各种异常、写日志到屏幕、单步或设断点或生成core或dmp文件、……这些方法都不行! 写日志到文件参考下面:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _MSC_VER
    #pragma warning(disable:4996)
    #include <windows.h>
    #include <io.h>
#else
    #include <unistd.h>
    #include <sys/time.h>
    #include <pthread.h>
    #define  CRITICAL_SECTION   pthread_mutex_t
    #define  _vsnprintf         vsnprintf
#endif
//Log{
#define MAXLOGSIZE 20000000
#define MAXLINSIZE 16000
#include <time.h>
#include <sys/timeb.h>
#include <stdarg.h>
char logfilename1[]="MyLog1.log";
char logfilename2[]="MyLog2.log";
static char logstr[MAXLINSIZE+1];
char datestr[16];
char timestr[16];
char mss[4];
CRITICAL_SECTION cs_log;
FILE *flog;
#ifdef _MSC_VER
void Lock(CRITICAL_SECTION *l) {
    EnterCriticalSection(l);
}
void Unlock(CRITICAL_SECTION *l) {
    LeaveCriticalSection(l);
}
#else
void Lock(CRITICAL_SECTION *l) {
    pthread_mutex_lock(l);
}
void Unlock(CRITICAL_SECTION *l) {
    pthread_mutex_unlock(l);
}
#endif
void LogV(const char *pszFmt,va_list argp) {
    struct tm *now;
    struct timeb tb;

    if (NULL==pszFmt||0==pszFmt[0]) return;
    _vsnprintf(logstr,MAXLINSIZE,pszFmt,argp);
    ftime(&tb);
    now=localtime(&tb.time);
    sprintf(datestr,"%04d-%02d-%02d",now->tm_year+1900,now->tm_mon+1,now->tm_mday);
    sprintf(timestr,"%02d:%02d:%02d",now->tm_hour     ,now->tm_min  ,now->tm_sec );
    sprintf(mss,"%03d",tb.millitm);
    printf("%s %s.%s %s",datestr,timestr,mss,logstr);
    flog=fopen(logfilename1,"a");
    if (NULL!=flog) {
        fprintf(flog,"%s %s.%s %s",datestr,timestr,mss,logstr);
        if (ftell(flog)>MAXLOGSIZE) {
            fclose(flog);
            if (rename(logfilename1,logfilename2)) {
                remove(logfilename2);
                rename(logfilename1,logfilename2);
            }
        } else {
            fclose(flog);
        }
    }
}
void Log(const char *pszFmt,...) {
    va_list argp;

    Lock(&cs_log);
    va_start(argp,pszFmt);
    LogV(pszFmt,argp);
    va_end(argp);
    Unlock(&cs_log);
}
//Log}
int main(int argc,char * argv[]) {
    int i;
#ifdef _MSC_VER
    InitializeCriticalSection(&cs_log);
#else
    pthread_mutex_init(&cs_log,NULL);
#endif
    for (i=0;i<10000;i++) {
        Log("This is a Log %04d from FILE:%s LINE:%d\n",i, __FILE__, __LINE__);
    }
#ifdef _MSC_VER
    DeleteCriticalSection(&cs_log);
#else
    pthread_mutex_destroy(&cs_log);
#endif
    return 0;
}
//1-79行添加到你带main的.c或.cpp的那个文件的最前面
//82-86行添加到你的main函数开头
//90-94行添加到你的main函数结束前
//在要写LOG的地方仿照第88行的写法写LOG到文件MyLog1.log中