遗传算法python代码实现路径优化

我根据书上的代码去写的,最后运行的时候一直给我报IndexError: list index out of range,另外完全用书上的数据又没什么问题,可以正常出结果,随便改了个数字也会报错,这种情况应该怎么解决呢
PyCharm Community Edition 2023.1

看看你的代码。IndexError: list index out of range 是你想访问的数据超出列表已有数据范围。比如列表中只有3个数,你访问第4个或者更多。


import random, math, sys
from builtins import range, str, int, len, list, enumerate, print, sum, isinstance, object

import matplotlib.pyplot as plt # 画图
from copy import deepcopy
from tqdm import *  # 进度条

DEBUG = False


geneNum = 100  # 种群数量
generationNum = 500 # 迭代次数

CENTER = 0  # 配送中心

HUGE = 9999999
VARY = 0.05  # 变异几率

n = 25  # 客户点数量
m = 2  # 加油站数量
k = 3  # 车辆数量
Q = 60  # 额定载重量, t
dis = 400  # 续航里程, km
costPerKilo = 7  # 油价
epu = 20  # 早到惩罚成本
lpu = 30  # 晚到惩罚成本
speed = 40  # 速度,km/h

# 坐标
X = [0, 10, 15, 24, 34, 42, 60, 62, 47, 46, 39, 67, 85, 80, 87, 95, 102, 104, 101, 119, 132, 140, 137, 129, 170,
160, 49, 115]
Y = [0, 17, 30, 53, 36, 16, 30, 41, 54, 66, 86, 73, 82, 52, 44, 17, 34, 49, 62, 82, 66, 54, 58, 22, 62, 37,40, 65]
# 需求量
t = [4.6, 2.9, 3.9, 8.1, 5.7, 2.5, 4.3, 5.1, 5.5, 3, 1.6, 5.9, 3.2, 6.8, 3.6, 5.6, 5.1, 6.1, 0.6, 8.8, 9.9, 1.7,
3.6, 5.2, 2.5, 0.1, 0.1]
# 最早到达时间
eh = [3, 3, 4, 2, 10, 5, 1, 4, 10, 15, 6, 4, 7, 10, 13, 16, 8, 15, 15, 4, 5, 4, 2, 3, 1, 0, 0]
# 最晚到达时间
lh = [4, 5, 7, 6, 11, 7, 9, 11, 12, 18, 9, 10, 9, 15, 14, 20, 11, 19, 16, 9, 10, 9, 11, 12, 9, 100, 100]
# 服务时间
h = [0.2, 0.3, 0.3, 0.3, 0.3, 0.5, 0.8, 0.4, 0.5, 0.7, 0.7, 0.6, 0.2, 0.2, 0.4, 0.1, 0.1, 0.2, 0.5, 0.2, 0.3, 0.2,
0.1, 0.4, 0.5, 0.4, 0.4]



class Gene:
    def __init__(self, name='Gene', data=None):
        self.name = name
        self.length = n + m + 1
        if data is None:
            self.data = self._getGene(self.length)
        else:
            assert(self.length+k == len(data))
            self.data = data
        self.fit = self.getFit()
        self.chooseProb = 0  # 选择概率

    # 为产生初始群体 做预备
    def _generate(self, length):
        data = [i for i in range(1, length)]
        random.shuffle(data)
        data.insert(0, CENTER)
        data.append(CENTER)
        return data

    # 为产生初始群体 做预备
    def _insertZeros(self, data):
        sum = 0
        newData = []
        for index, pos in enumerate(data):
            sum += t[pos]
            if sum > Q:
                newData.append(CENTER)
                sum = t[pos]
            newData.append(pos)
        return newData

    """产生初始群体___________________"""
    def _getGene(self, length: object) -> object:
        data = self._generate(length)
        data = self._insertZeros(data)
        return data

    """计算适应度___________________"""
    def getFit(self):
        fit = distCost = timeCost = overloadCost = fuelCost = 0
        dist = []  # from this to next

        # 计算距离
        i = 1
        while i < len(self.data):
            calculateDist = lambda x1, y1, x2, y2: math.sqrt(((x1 - x2) ** 2) + ((y1 - y2) ** 2))
            dist.append(calculateDist(X[self.data[i]], Y[self.data[i]], X[self.data[i - 1]], Y[self.data[i - 1]]))
            i += 1

        # 距离成本
        distCost = sum(dist) * costPerKilo#距离和乘以油价

        # 时间成本
        timeSpent = 0
        for i, pos in enumerate(self.data):
            # 跳过第一个中心
            if i == 0:
                continue
            # 新车
            elif pos == CENTER:
                timeSpent = 0
            # 更新路上花费的时间
            timeSpent += (dist[i - 1] / speed)
            # 提前到达
            if timeSpent < eh[pos]:
                timeCost += ((eh[pos] - timeSpent) * epu)
                timeSpent = eh[pos]
            # 迟到
            elif timeSpent > lh[pos]:
                timeCost += ((timeSpent - lh[pos]) * lpu)
            # 更新时间
            timeSpent += h[pos]

        # 过载成本和燃油成本
        load = 0
        distAfterCharge = 0
        for i, pos in enumerate(self.data):
            # 跳过第一个中心
            if i == 0:
                continue
            # 在这里充电
            if pos > n:
                distAfterCharge = 0
            # at center, re-load
            elif pos == CENTER:
                load = 0
                distAfterCharge = 0
            # normal
            else:
                load += t[pos]#需求量
                distAfterCharge += dist[i - 1]
                # 更新负载和燃料成本
                overloadCost += (HUGE * (load > Q))
                fuelCost += (HUGE * (distAfterCharge > dis))

        fit = distCost + timeCost + overloadCost + fuelCost
        return 1/fit
     #计算每个个体的 选择概率 (每个个体概率=个体适应度值/总的适应度值
    def updateChooseProb(self, sumFit):
        self.chooseProb = self.fit / sumFit
    #选择路径
    def moveRandSubPathLeft(self):
        path = random.randrange(k)  # 选择路径索引,随机分成k段
        index = self.data.index(CENTER, path+1) #移动到所选索引
        # move first CENTER
        locToInsert = 0
        self.data.insert(locToInsert, self.data.pop(index))
        index += 1
        locToInsert += 1
        # move data after CENTER
        while self.data[index] != CENTER:
            self.data.insert(locToInsert, self.data.pop(index))
            index += 1
            locToInsert += 1
        assert(self.length+k == len(self.data))

    # plot this gene in a new window
    def plot(self):
        Xorder = [X[i] for i in self.data]
        Yorder = [Y[i] for i in self.data]
        plt.plot(Xorder, Yorder, c='black', zorder=1)
        plt.scatter(X, Y, zorder=2)
        plt.scatter([X[0]], [Y[0]], marker='o', zorder=3)
        plt.scatter(X[-m:], Y[-m:], marker='^', zorder=3)
        plt.title(self.name)
        plt.show()




# return a bunch of random genes
def getRandomGenes(size):
    genes = []
    for i in range(size):
        assert isinstance(genes, object)
        genes.append(Gene("Gene "+str(i)))
    return genes


# 计算适应度和
def getSumFit(genes):
    sumFit = 0
    for gene in genes:
        sumFit += gene.fit
    return sumFit


# 更新选择概率
def updateChooseProb(genes):
    sumFit = getSumFit(genes)
    for gene in genes:
        gene.updateChooseProb(sumFit)


# 计算累计概率
def getSumProb(genes):
    sum = 0
    for gene in genes:
        sum += gene.chooseProb
    return sum


# 选择复制,选择前 1/3
def choose(genes):
    num = int(geneNum/6) * 2    # 选择偶数个,方便下一步交叉
    # sort genes with respect to chooseProb
    key = lambda gene: gene.chooseProb
    genes.sort(reverse=True, key=key)
    # return shuffled top 1/3
    return genes[0:num]


# 交叉一对
def crossPair(gene1, gene2, crossedGenes):
    gene1.moveRandSubPathLeft()
    gene2.moveRandSubPathLeft()
    newGene1 = []
    newGene2 = []
    # copy first paths
    centers = 0
    firstPos1 = 1
    for pos in gene1.data:
        firstPos1 += 1
        centers += (pos == CENTER)
        newGene1.append(pos)
        if centers >= 2:
            break
    centers = 0
    firstPos2 = 1
    for pos in gene2.data:
        firstPos2 += 1
        centers += (pos == CENTER)
        newGene2.append(pos)
        if centers >= 2:
            break
    # copy data not exits in father gene
    for pos in gene2.data:
        if pos not in newGene1:
            newGene1.append(pos)
    for pos in gene1.data:
        if pos not in newGene2:
            newGene2.append(pos)
    # add center at end
    newGene1.append(CENTER)
    newGene2.append(CENTER)
    # 计算适应度最高的
    key = lambda gene: gene.fit
    possible = []
    while gene1.data[firstPos1] != CENTER:
        newGene = newGene1.copy()
        newGene.insert(firstPos1, CENTER)
        newGene = Gene(data=newGene.copy())
        possible.append(newGene)
        firstPos1 += 1
    possible.sort(reverse=True, key=key)
    assert(possible)
    crossedGenes.append(possible[0])
    key = lambda gene: gene.fit
    possible = []
    while gene2.data[firstPos2] != CENTER:
        newGene = newGene2.copy()
        newGene.insert(firstPos2, CENTER)
        newGene = Gene(data=newGene.copy())
        possible.append(newGene)
        firstPos2 += 1
    possible.sort(reverse=True, key=key)
    crossedGenes.append(possible[0])


# 交叉
def cross(genes):
    crossedGenes = []
    for i in range(0, len(genes), 2):
        crossPair(genes[i], genes[i+1], crossedGenes)
    return crossedGenes



# 合并
def mergeGenes(genes, crossedGenes):
    # sort genes with respect to chooseProb
    key = lambda gene: gene.chooseProb
    genes.sort(reverse=True, key=key)
    pos = geneNum - 1
    for gene in crossedGenes:
        genes[pos] = gene
        pos -= 1
    return  genes


# 变异一个
def varyOne(gene):
    varyNum = 10
    variedGenes = []
    for i in range(varyNum):
        p1, p2 = random.choices(list(range(1,len(gene.data)-2)), k=2)
        newGene = gene.data.copy()
        newGene[p1], newGene[p2] = newGene[p2], newGene[p1] # 交换
        variedGenes.append(Gene(data=newGene.copy()))
    key = lambda gene: gene.fit
    variedGenes.sort(reverse=True, key=key)
    return variedGenes[0]


# 变异
def vary(genes):
    for index, gene in enumerate(genes):
        # 精英主义,保留前三十
        if index < 30:
            continue
        if random.random() < VARY:
            genes[index] = varyOne(gene)
    return genes


if __name__ == "__main__" and not DEBUG:
    genes = getRandomGenes(geneNum) # 初始种群
    # 迭代
    for i in tqdm(range(generationNum)):
        updateChooseProb(genes)
        sumProb = getSumProb(genes)
        chosenGenes = choose(deepcopy(genes))   # 选择
        crossedGenes = cross(chosenGenes)   # 交叉
        genes = mergeGenes(genes, crossedGenes) # 复制交叉至子代种群
        genes = vary(genes) # under construction
    # sort genes with respect to chooseProb
    key = lambda gene: gene.fit
    genes.sort(reverse=True, key=key)   # 以fit对种群排序
    print('\r\n')
    print('data:', genes[0].data)
    print('fit:', genes[0].fit)
    genes[0].plot() # 画出来


if DEBUG:
    print("START")
    gene = Gene()
    print(gene.data)
    gene.moveRandSubPathLeft()
    print(gene.data)


    print("FINISH")