以邻接矩阵表示法创建有向图,并基于图的深度优先遍历策略设计一算法,判断有向图中是否存在由顶点A到顶点B的路径。(代码注释详细点)
代码如下:
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
#define MVNUM 100 //最大顶点数
#define MAXINT 32767 //极大值相当于无穷大
int visited[MVNUM] = { 0 }; //辅助数组,判断遍历过了没
int visit[MVNUM] = { 0 }; //同理
typedef struct
{
char vexs[MVNUM]; //顶点数据数组
int arr[MVNUM][MVNUM]; //邻接矩阵
int vexnum, arcnum; //现有顶点数与边数
}AMGraph;
typedef struct
{
int* base; //队列数组
int front; //队头的下标
int rear; //队尾的下标
}sqQueue;
int initGraph(AMGraph& G); //初始化邻接矩阵
void showGraph(AMGraph G); //打印邻接矩阵
int locatVex(AMGraph G, char u); //定位顶点在邻接矩阵的下标
int createGraph(AMGraph& G); //建立邻接矩阵
void dfsAM(AMGraph G,int i); //深度优先搜索遍历
void bfsAM(AMGraph G, int i); //广度优先搜索遍历
int initQueue(sqQueue& Q); //初始化队列
int enQueue(sqQueue& Q, int i); //入队
int firstVEX(AMGraph G, int u); //第一个邻接顶点
int nextVEX(AMGraph G,int w ,int u); //下一个邻接顶点
int main()
{
AMGraph G;
initGraph(G);
createGraph(G);
showGraph(G);
cout << "the result of dfs is:";
dfsAM(G,0);
cout << endl;
cout << "the result of bfs is:";
bfsAM(G,0);
}
int initGraph(AMGraph& G)
{
cout << "please input some vexnum and arcnum!" << endl;
cin >> G.vexnum >> G.arcnum; //输入你想要的顶点数和边数
cout << "please input data of vex!" << endl;
for (int i = 0; i < G.vexnum; i++)
{
cin >>G.vexs[i]; //输入顶点数据
}
for (int i = 0; i < G.vexnum; i++)
{
for (int j = 0; j < G.vexnum; j++)
{
G.arr[i][j] = MAXINT; //邻接矩阵的初值都为无穷大
}
}
return 1;
}
void showGraph(AMGraph G)
{
for (int i = 0; i < G.vexnum; i++)
{
for (int j = 0; j < G.vexnum; j++)
{
if (G.arr[i][j] == MAXINT) //无穷大弄得更好看点
cout << "∞" << " ";
else
cout << " " << G.arr[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
int locateVex(AMGraph G, char u)
{
for (int i = 0; i < G.vexnum; i++)
{
if (u == G.vexs[i]) //如果u的值和顶点数据匹配,就返回顶点在矩阵中的下标
return i;
}
return -1;
}
int createGraph(AMGraph& G)
{
int i = 0; int j = 0;int w = 0; //i,j代表顶点下标,w代表权值
char v1 = 0; char v2 = 0; //v1,v2为顶点数据
cout << "please input w of v1 to v2 in graph!" << endl;
for (int k = 0; k < G.arcnum; k++)
{
cin >> v1 >> v2 >> w;
i = locateVex(G, v1); //找到v1在顶点表的下标,并返回赋值给i
j = locateVex(G, v2);
G.arr[i][j] = w;
G.arr[j][i] = G.arr[i][j]; //无向图的矩阵是对称矩阵
}
cout << endl;
return 1;
}
void dfsAM(AMGraph G, int i)
{//随机选一个顶点下标,这里为0
cout << G.vexs[i]<<" "; //输出0下标在顶点表的值
visited[i] = 1; //辅助数组对应下标i的值置为1
for (int j = 0; j < G.vexnum; j++)
{
if (G.arr[i][j] != MAXINT && (!visited[j])) //只要是邻接的顶点并且没有访问过
{ //不然就退回,也是递归结束条件
dfsAM(G, j); //递归使用函数
}
}
}
int initQueue(sqQueue& Q)
{
Q.base = (int *)malloc(sizeof(int) * MVNUM);
//给base动态分配一个int*类型MVNUM个int大小的一维数组空间
Q.front = Q.rear = 0; //队头和对尾下标都置为0
return 1;
}
int enQueue(sqQueue& Q, int i)
{
if ((Q.rear + 1) % MVNUM == Q.front) //队满
return 0;
Q.base[Q.rear] = i; //先赋值再加
Q.rear = (Q.rear + 1) % MVNUM;
return 1;
}
int deQueue(sqQueue& Q, int &u)
{
if (Q.rear == Q.front) //队空
return 0;
u = Q.base[Q.front]; //要删的值给u然后再加
Q.front = (Q.front + 1) % MVNUM;
return 1;
}
int firstVEX(AMGraph G, int u)
{//在邻接矩阵u行0列开始遍历,如果找到不等于无穷的,
//并且没有访问过的就返回列的下标,否则就返回无穷
for (int i = 0; i < G.vexnum; i++)
{
if (G.arr[u][i] != MAXINT && visit[i] == 0)
{
return i;
}
}
return MAXINT;
}
int nextVEX(AMGraph G, int w, int u)
{//在邻接矩阵u行w+1列开始遍历,如果找到不等于无穷的,
//并且没有访问过的就返回列的下标,否则就返回无穷
for (int i = w + 1; i < G.vexnum; i++)
{
if (G.arr[u][i] != MAXINT && visit[i] == 0)
{
return i;
}
}
return MAXINT;
}
void bfsAM(AMGraph G, int i)
{//随机选一个顶点下标,这里为0
cout << G.vexs[i] << " "; //输出i下标在顶点表的值
visit[i] = 1; //辅助数值对应下标i的值置为1
sqQueue Q;
initQueue(Q);
enQueue(Q, i); //i为矩阵中顶点的行下标,让它入队(顶点表的下标和矩阵的列下标,行下标一致,本算法中说谁的下标都一样)
while (Q.rear != Q.front) //队不为空
{
int u = 0; //接收矩阵中顶点的行下标,因为是邻接矩阵
deQueue(Q,u); //出队并让u接收矩阵中顶点的行下标
for (int w = firstVEX(G, u); w != MAXINT; w = nextVEX(G, w, u))
{//注意在一次循环中u不变
if (!visit[w])
{
cout << G.vexs[w] << " ";
visit[w] = 1;
enQueue(Q, w);
}
}
}
}
望采纳。
#include <iostream>
#include <cstdlib>
struct Graph {
int v; // 顶点数
int e; // 边数
int **adj; // 邻接矩阵
};
// 初始化有向图
Graph *init(int v) {
Graph *g = (Graph *)malloc(sizeof(Graph));
g->v = v;
g->e = 0;
g->adj = (int **)malloc(v * sizeof(int *));
for (int i = 0; i < v; i++) {
g->adj[i] = (int *)malloc(v * sizeof(int));
}
// 将邻接矩阵初始化为0
for (int i = 0; i < v; i++) {
for (int j = 0; j < v; j++) {
g->adj[i][j] = 0;
}
}
return g;
}
// 向有向图中添加边
void addEdge(Graph *g, int s, int t) {
g->adj[s][t] = 1;
g->e++;
}
// 判断有向图中是否存在由顶点A到顶点B的路径
bool hasPath(Graph *g, int s, int t) {
// 判断是否存在自环
if (s == t) return true;
// 初始化一个辅助数组,用来存储每个顶点是否已经被遍历过
bool *visited = (bool *)malloc(g->v * sizeof(bool));
for (int i = 0; i < g->v; i++) {
visited[i] = false;
}
// 递归搜索
return dfs(g, s, t, visited);
}
// 深度优先遍历
bool dfs(Graph *g, int s, int t, bool *visited) {
// 标记为已遍历
visited[s] = true;
// 搜索所有与s相邻的顶点
for (int i = 0; i < g->v; i++) {
if (g->adj[s][i] == 1 && !dfs(g, i, t, visited)) {
return true;
}
}
return false;
}
int main() {
// 创建有向图
Graph *g = init(5);
addEdge(g, 0, 1);
addEdge(g, 1, 2);
addEdge(g, 2, 3);
addEdge(g, 3, 4);
// 判断是否存在由0到4的路径
std::cout << hasPath(g, 0, 4) << std::endl; // 输出1
// 判断是否存在由4到0的路径
std::cout << hasPath(g, 4, 0) << std::endl; // 输出0
return 0;
}