stm32蓝牙模块添加上无法控制单片机响应,如何解决?(语言-c语言)

因为做的设计需要添加蓝牙模块,所以最近在做这个,但是不知道原因是什么,我在编写完程序后,用hc-08蓝牙模块无法控制电机的运转,发出指令也无法响应,希望各位能够指点迷津,非常感谢。以下是蓝牙有关的代码

#include "sys.h"
#include "bsp_usart.h"            
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h"                    //ucos 使用      

#endif

//V1.3修改说明 
//支持适应不同频率下的串口波特率设置.
//加入了对printf的支持
//增加了串口接收命令功能.
//修正了printf第一个字符丢失的bug
//V1.4修改说明
//1,修改串口初始化IO的bug
//2,修改了USART_RX_STA,使得串口最大接收字节数为214次方
//3,增加了USART_REC_LEN,用于定义串口最大允许接收的字节数(不大于214次方)
//4,修改了EN_USART1_RX的使能方式
//V1.5修改说明
//1,增加了对UCOSII的支持  
//加入以下代码,支持printf函数,而不需要选择use MicroLIB      
#if 1
#pragma import(__use_no_semihosting)             
//标准库需要的支持函数                 
struct __FILE 
{ 
    int handle; 

}; 

FILE __stdout;       
//定义_sys_exit()以避免使用半主机模式    
void _sys_exit(int x) 
{ 
    x = x; 
} 
//重定义fputc函数 
int fputc(int ch, FILE *f)
{      
    while((USART1->SR&0X40)==0);//循环发送,直到发送完毕   
    USART1->DR = (u8) ch;      
    return ch;
}
#endif 

/*使用microLib的方法*/
 /* 
int fputc(int ch, FILE *f)
{
    USART_SendData(USART1, (uint8_t) ch);

    while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {}    
   
    return ch;
}
int GetKey (void)  { 

    while (!(USART1->SR & USART_FLAG_RXNE));

    return ((int)(USART1->DR & 0x1FF));
}
*/
 
#if EN_USART1_RX   //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误       
u8 USART_RX_BUF[USART_REC_LEN];     //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15,    接收完成标志
//bit14,    接收到0x0d
//bit13~0,    接收到的有效字节数目
u16 USART_RX_STA=0;       //接收状态标记      
  
void uart_init(u32 bound){
  //GPIO端口设置
  GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;
     
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);    //使能USART1,GPIOA时钟
  
    //USART1_TX   GPIOA.9
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;    //复用推挽输出
  GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9
   
  //USART1_RX      GPIOA.10初始化
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10  

  //Usart1 NVIC 配置
  NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;        //子优先级3
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;            //IRQ通道使能
    NVIC_Init(&NVIC_InitStructure);    //根据指定的参数初始化VIC寄存器
  
   //USART 初始化设置

    USART_InitStructure.USART_BaudRate = bound;//串口波特率
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
    USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
    USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;    //收发模式

  USART_Init(USART1, &USART_InitStructure); //初始化串口1
  USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断
  USART_Cmd(USART1, ENABLE);                    //使能串口1 

}
    u8 res;
void USART1_IRQHandler(void)                    //串口1中断服务程序
    {

#if SYSTEM_SUPPORT_OS         //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
    OSIntEnter();    
#endif
    if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)  //接收中断(接收到的数据必须是0x0d 0x0a结尾)
        {
        res =USART_ReceiveData(USART1);    //读取接收到的数据
        USART_SendData(USART1,res);
        if((USART_RX_STA&0x8000)==0)//接收未完成
            {
            if(USART_RX_STA&0x4000)//接收到了0x0d
                {
                if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
                else USART_RX_STA|=0x8000;    //接收完成了 
                }
            else //还没收到0X0D
                {    
                if(res==0x0d)USART_RX_STA|=0x4000;
                else
                    {
                    USART_RX_BUF[USART_RX_STA&0X3FFF]=res ;
                    USART_RX_STA++;
                    if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收      
                    }         
                }
            }            
     } 
#if SYSTEM_SUPPORT_OS     //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
    OSIntExit();                                               
#endif
} 
#endif
#ifndef __USART_H
#define __USART_H
#include "stdio.h"    
#include "sys.h" 

//V1.3修改说明 
//支持适应不同频率下的串口波特率设置.
//加入了对printf的支持
//增加了串口接收命令功能.
//修正了printf第一个字符丢失的bug
//V1.4修改说明
//1,修改串口初始化IO的bug
//2,修改了USART_RX_STA,使得串口最大接收字节数为2的14次方
//3,增加了USART_REC_LEN,用于定义串口最大允许接收的字节数(不大于2的14次方)
//4,修改了EN_USART1_RX的使能方式
//V1.5修改说明
//1,增加了对UCOSII的支持
#define USART_REC_LEN              200      //定义最大接收字节数 200
#define EN_USART1_RX             1        //使能(1)/禁止(0)串口1接收
          
extern u8  USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
extern u16 USART_RX_STA;                 //接收状态标记    
//如果想串口中断接收,请不要注释以下宏定义
void uart_init(u32 bound);
#endif
#include "sys.h"


//THUMB指令不支持汇编内联
//采用如下方法实现执行汇编指令WFI  
void WFI_SET(void)
{
    __ASM volatile("wfi");          
}
//关闭所有中断
void INTX_DISABLE(void)
{          
    __ASM volatile("cpsid i");
}
//开启所有中断
void INTX_ENABLE(void)
{
    __ASM volatile("cpsie i");          
}
//设置栈顶地址
//addr:栈顶地址
__asm void MSR_MSP(u32 addr) 
{
    MSR MSP, r0             //set Main Stack value
    BX r14
}
#ifndef __SYS_H
#define __SYS_H    
#include "stm32f10x.h"
      

//0,不支持ucos
//1,支持ucos
#define SYSTEM_SUPPORT_OS        0        //定义系统文件夹是否支持UCOS
                                                                        
     
//位带操作,实现51类似的GPIO控制功能
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 
//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+12) //0x4001080C 
#define GPIOB_ODR_Addr    (GPIOB_BASE+12) //0x40010C0C 
#define GPIOC_ODR_Addr    (GPIOC_BASE+12) //0x4001100C 
#define GPIOD_ODR_Addr    (GPIOD_BASE+12) //0x4001140C 
#define GPIOE_ODR_Addr    (GPIOE_BASE+12) //0x4001180C 
#define GPIOF_ODR_Addr    (GPIOF_BASE+12) //0x40011A0C    
#define GPIOG_ODR_Addr    (GPIOG_BASE+12) //0x40011E0C    

#define GPIOA_IDR_Addr    (GPIOA_BASE+8) //0x40010808 
#define GPIOB_IDR_Addr    (GPIOB_BASE+8) //0x40010C08 
#define GPIOC_IDR_Addr    (GPIOC_BASE+8) //0x40011008 
#define GPIOD_IDR_Addr    (GPIOD_BASE+8) //0x40011408 
#define GPIOE_IDR_Addr    (GPIOE_BASE+8) //0x40011808 
#define GPIOF_IDR_Addr    (GPIOF_BASE+8) //0x40011A08 
#define GPIOG_IDR_Addr    (GPIOG_BASE+8) //0x40011E08 
 
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //输入

//以下为汇编函数
void WFI_SET(void);        //执行WFI指令
void INTX_DISABLE(void);//关闭所有中断
void INTX_ENABLE(void);    //开启所有中断
void MSR_MSP(u32 addr);    //设置堆栈地址

#endif

本质上就是串口而已,你先直接用串口连上调试看看能不能控制,如果不能,就和蓝牙无关了;如果能,那就是在蓝牙转串口的过程出问题了。