怎么在代码中加一个按下鼠标右键再进行移动

import numpy as np
from termcolor import colored
import timeit
import _thread
import imutils
import time
import mss
import cv2
import os
import signal
import sys
import pynput
import ctypes
from lib.grab import grab_screen

sct = mss.mss()
Wd, Hd = sct.monitors[1]["width"], sct.monitors[1]["height"]
SendInput = ctypes.windll.user32.SendInput
PUL = ctypes.POINTER(ctypes.c_ulong)

class KeyBdInput(ctypes.Structure):
fields = [("wVk", ctypes.c_ushort),
("wScan", ctypes.c_ushort),
("dwFlags", ctypes.c_ulong),
("time", ctypes.c_ulong),
("dwExtraInfo", PUL)]
class HardwareInput(ctypes.Structure):
fields = [("uMsg", ctypes.c_ulong),
("wParamL", ctypes.c_short),
("wParamH", ctypes.c_ushort)]
class MouseInput(ctypes.Structure):
fields = [("dx", ctypes.c_long),
("dy", ctypes.c_long),
("mouseData", ctypes.c_ulong),
("dwFlags", ctypes.c_ulong),
("time", ctypes.c_ulong),
("dwExtraInfo", PUL)]
class Input_I(ctypes.Union):
fields = [("ki", KeyBdInput),
("mi", MouseInput),
("hi", HardwareInput)]
class Input(ctypes.Structure):
fields = [("type", ctypes.c_ulong),
("ii", Input_I)]

def set_pos(x, y):
x = 1 + int(x * 65536./Wd)
y = 1 + int(y * 65536./Hd)
extra = ctypes.c_ulong(0)
ii_ = pynput.util.win32.INPUT_union()
ii
.mi = pynput._util.win32.MOUSEINPUT(x, y, 0, (0x0001 | 0x8000), 0, ctypes.cast(ctypes.pointer(extra), ctypes.c_void_p))
command=pynput.util.win32.INPUT(ctypes.c_ulong(0), ii)
SendInput(1, ctypes.pointer(command), ctypes.sizeof(command))
if name == "main":
print("Do not run this file directly.")

def start(ENABLE_AIMBOT):

# Config
YOLO_DIRECTORY = "models"
CONFIDENCE = 0.36
THRESHOLD = 0.22

#
#   Size (in pixels) of the screen capture box to feed the neural net.
#   This box is in the center of your screen. Lower value makes the network faster.
#
#   Example: "ACTIVATION_RANGE = 400" means a 400x400 pixel box.
#
ACTIVATION_RANGE = 250

# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([YOLO_DIRECTORY, "coco-dataset.labels"])
LABELS = open(labelsPath).read().strip().split("\n")

# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
                           dtype="uint8")

# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([YOLO_DIRECTORY, "yolov3-tiny.weights"])
configPath = os.path.sep.join([YOLO_DIRECTORY, "yolov3-tiny.cfg"])

# Wait for buffering
time.sleep(0.4)

# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] loading neural-network from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

# Define screen capture area
print("[INFO] loading screencapture device...")
W, H = None, None
origbox = (int(Wd/2 - ACTIVATION_RANGE/2),
           int(Hd/2 - ACTIVATION_RANGE/2),
           int(Wd/2 + ACTIVATION_RANGE/2),
           int(Hd/2 + ACTIVATION_RANGE/2))

# Log whether aimbot is enabled
if not ENABLE_AIMBOT:
    print("[INFO] aimbot disabled, using visualizer only...")
else:
    print(colored("[OKAY] Aimbot enabled!", "green"))

# Handle Ctrl+C in terminal, release pointers
def signal_handler(sig, frame):
    # release the file pointers
    print("\n[INFO] cleaning up...")
    sct.close()
    cv2.destroyAllWindows()
    sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)

# Test for GPU support
build_info = str("".join(cv2.getBuildInformation().split()))
if cv2.ocl.haveOpenCL():
    cv2.ocl.setUseOpenCL(True)
    cv2.ocl.useOpenCL()
    print(colored("[OKAY] OpenCL is working!", "green"))
else:
    print(
        colored("[WARNING] OpenCL acceleration is disabled!", "yellow"))
if "CUDA:YES" in build_info:
    print(colored("[OKAY] CUDA is working!", "green"))
else:
    print(
        colored("[WARNING] CUDA acceleration is disabled!", "yellow"))

print()

# loop over frames from the video file stream
while True:
    start_time = timeit.default_timer()
    frame = np.array(grab_screen(region=origbox))
    frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2BGR)

    # if the frame dimensions are empty, grab them
    if W is None or H is None:
        (H, W) = frame.shape[: 2]

    frame = cv2.UMat(frame)

    # construct a blob from the input frame and then perform a forward
    # pass of the YOLO object detector, giving us our bounding boxes
    # and associated probabilities
    blob = cv2.dnn.blobFromImage(frame, 1 / 260, (150, 150),
                                 swapRB=False, crop=False)
    net.setInput(blob)
    layerOutputs = net.forward(ln)

    # initialize our lists of detected bounding boxes, confidences,
    # and class IDs, respectively
    boxes = []
    confidences = []
    classIDs = []

    # loop over each of the layer outputs
    for output in layerOutputs:
        # loop over each of the detections
        for detection in output:
            # extract the class ID and confidence (i.e., probability)
            # of the current object detection
            scores = detection[5:]

            # classID = np.argmax(scores)
            # confidence = scores[classID]
            classID = 0  # person = 0
            confidence = scores[classID]

            # filter out weak predictions by ensuring the detected
            # probability is greater than the minimum probability
            if confidence > CONFIDENCE:
                # scale the bounding box coordinates back relative to
                # the size of the image, keeping in mind that YOLO
                # actually returns the center (x, y)-coordinates of
                # the bounding box followed by the boxes' width and
                # height
                box = detection[0: 4] * np.array([W, H, W, H])
                (centerX, centerY, width, height) = box.astype("int")

                # use the center (x, y)-coordinates to derive the top
                # and and left corner of the bounding box
                x = int(centerX - (width / 2))
                y = int(centerY - (height / 2))

                # update our list of bounding box coordinates,
                # confidences, and class IDs
                boxes.append([x, y, int(width), int(height)])
                confidences.append(float(confidence))
                classIDs.append(classID)

    # apply non-maxima suppression to suppress weak, overlapping
    # bounding boxes
    idxs = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD)

    # ensure at least one detection exists
    if len(idxs) > 0:

        # Find best player match
        bestMatch = confidences[np.argmax(confidences)]

        # loop over the indexes we are keeping
        for i in idxs.flatten():
            # extract the bounding box coordinates
            (x, y) = (boxes[i][0], boxes[i][1])
            (w, h) = (boxes[i][2], boxes[i][3])

            # draw target dot on the frame
            cv2.circle(frame, (int(x + w / 2), int(y + h / 5)), 5, (0, 0, 255), -1)

            # draw a bounding box rectangle and label on the frame
            # color = [int(c) for c in COLORS[classIDs[i]]]
            cv2.rectangle(frame, (x, y),
                            (x + w, y + h), (0, 0, 255), 2)

            text = "TARGET {}%".format(int(confidences[i] * 100))
            cv2.putText(frame, text, (x, y - 5),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

            if ENABLE_AIMBOT and bestMatch == confidences[i]:
                mouseX = origbox[0] + (x + w/1.5)
                mouseY = origbox[1] + (y + h/5)
                set_pos(mouseX, mouseY)

    cv2.imshow("Neural Net Vision (Pine)", frame)
    elapsed = timeit.default_timer() - start_time
    sys.stdout.write(
        "\r{1} FPS with {0} MS interpolation delay \t".format(int(elapsed*1000), int(1/elapsed)))
    sys.stdout.flush()
    if cv2.waitKey(1) & 0xFF == ord('0'):
        break

# Clean up on exit
signal_handler(0, 0)

在所有功能函数之前假如死循环,然后获取鼠标按键消息,当有按键按下时退出循环,进入上述功能函数!望采纳!