Shift By 7

Given a hash table of size N with M (<= N) positive integers in. If these integers were inserted into the table according to the hash function h(x)=(x+7)%N, and if linear probing (with a step size equals to one) was used to solve collisions. Please output a possible sequence of insertions.

Note: when there were more than one choices of an insertion, the smallest candidate was always selected.

Input

Each case occupies 2 lines. The first line contains an positive integer N (<= 50,000). The second line gives the has table which consists of N integers where M of them are positive and these M integers are unique. Those cells occupied by non-positive integers are considered empty.

Output

For each test case, output in a line the sequence of insertions. The numbers must be seperated by one space, and there must be no extra space at the end of the sequence.

A valid sequence of insertions is guarantee to exist for each of the input cases.

Sample Input

11
11 0 94 18 96 40 98 63 34 76 80
Sample Output

18 34 80 94 96 40 98 63 76 11

http://blog.csdn.net/u010731824/article/details/48264127