This question already has an answer here:
I have a type that implements the stringer interface
// RowID stores the ID of a single row in a table
type RowID []string
// String implements Stringer interface for RowID
func (r RowID) String() string {
return fmt.Sprintf("[%s]", strings.Join(r, ", "))
}
And I have a function that I want to pass a slice of this type (or any other type that implements the Stringer interface) to.
// PrintChanges ...
func PrintChanges(ids []fmt.Stringer) {
for _, id := range ids {
fmt.Println(id)
}
}
However, The go compiler gives me an error:
cannot use rowIDs (type []RowID) as type []fmt.Stringer in argument to PrintChanges
I can pass a RowID to a func that accepts a single fmt.Stringer
func PrintChange(id fmt.Stringer) {
fmt.Println(id)
}
...
PrintChange(RowID{"1", "24"})
But for some reason I am not able to pass a slice of RowID to a func that accepts a slice of fmt.Stringer. What am I missing?
</div>
It is considered okay by professional Go programmers to repeat functions like this for every type, or to have a for loop over every slice you want to print. This is because Go aims to be as easy to read as possible, i.e. a person who reads a chunk of code for the first time should not be asking questions like "which function overload will this function call go to" (common pitfall in C++, Go does not have function overloads). So you can just write in main()
:
Playground: https://ideone.com/IL3rGR
for _, id := range rowIDs { fmt.Println(id) }
Simple and concise.
fmt.Println(id)
does not call your String()
functionThis is because the fmt
library uses the reflect
library and hardcodes behavior for the string
type, which you are trying to replace. RowID
instances are also string
instances, the library always prefers string
over its type aliases. I would say it is a bug in the library:
Library source: https://golang.org/src/fmt/print.go#L649
// Some types can be done without reflection.
switch f := arg.(type) {
...
case string:
p.fmtString(f, verb)
You can use a function that takes an interface{} and makes a runtime reflect type cast to a slice of Stringers. Note that this means you will not see type mismatches during compilation, only in runtime:
Playground: https://ideone.com/vlrBP9
func castToStringerSlice(iface interface{}) ([]fmt.Stringer, bool /* ok */) {
if reflect.TypeOf(iface).Kind() != reflect.Slice {
return nil, false
}
v := reflect.ValueOf(iface)
stringers := make([]fmt.Stringer, v.Len())
for i := 0; i < v.Len(); i++ {
stringers[i] = v.Index(i)
}
return stringers, true
}
func PrintChanges(iface_ids interface{}) {
ids, ok := castToStringerSlice(iface_ids)
if !ok {
log.Fatal(errors.New("the argument to PrintChanges must be a slice of Stringers"))
}
for _, id := range ids {
fmt.Println(id)
}
}
Resources: