Consider this package:
package A
var X="change me"
var Y=func(i int) int { return i*i) }
func Z(i int) int { return -i) }
The two explicit variables (X,Y) can be changed in another package, say main...
package main
import "A"
func main () {
A.X="done"
A.Y=func (i int) int { return i*i*i }
print(A.X,A.Y(7))
//... but A.Z apparently can't be changed.
//A.Z=func (int i) int { return i*i*i } //main.go:8: cannot assign to A.Z
}
Obviously there's a difference between defining a func variable (like Y) and an explicit func (like Z). I have googled this but not found much in the way of enlightenment. It almost seems as if var SomeFunc=func (...) defines indeed a variable, but func SomeFunc(...) defines a constant.
PS: A small goodie I found while researching this which I have not seen mentioned in the Go books I've read so far. A dot before a package import imports names without them having to be qualified:
package main
import . "A"
func main () {
X="done"
Y=func (i int) int { return i*i*i }
print(X,Y(7))
}
There's a difference between declaring a variable initialized with a function value:
var Y=func(i int) int { return i*i) }
and declaring a function:
func Z(i int) int { return -i) }
The specification says this about declarations:
A declaration binds a non-blank identifier to a constant, type, variable, function, label, or package.
A function declaration binds an identifier, the function name, to a function.
The declaration of Y
binds a variable to the name. This variable is initialized with a function value. The declaration of Z
binds a function to the name.
If an explicit period (.) appears instead of a name, all the package's exported identifiers declared in that package's package block will be declared in the importing source file's file block and must be accessed without a qualifier.
func SomeFunc()
, in essence creates a strong/constant/immutable binding of the identifier SomeFunc
to the function you define. When you create a variable like so:
var (
SomeFunc = func(i int) int {
return i * 2
}
)
You create a global variable of the type func(int) int
. You can reassign this variable later on. This is something you can't really do with a func SomeFunc
identifier. Simply put, this is because func SomeFunc()
binds the function Directly to the identifier. The var SomeFunc
approach creates a variable (type func(int) int
in this case), and that variable is initialised using the function you're assigning. As is the case with variables: reassignment is possible.
What you can do with functions, is shadow them using a scoped variable. This will probably get flagged by most linters, but it's a technique/trick that sometimes can be useful in testing
As for the dot-imports: Please don't do that unless there's a very, very, very good reason for it. A good reason would be you writing a package that adds to an existing one, so you no longer import an existing one, but import your own. Think of it as extending a package. 99% of the time. Don't, whatever you do, use it to quench errors when you import encoding/json
to add json serialization annotations to a struct. In those cases, use an underscore:
package foo
import (
"encoding/json"
)
type Bar struct {
Foobar string `json:"foobar"`
}
func New() *Bar {
&Bar{"Default foobar"}
}
Don't know about golang 1.8, but packages like that could result in compiler errors (package encoding/json imported but not used). To silence that error, you simply changed the import to:
import(
_ "encoding/json"
)
The dot-packages, underscores, and package aliases all follow the same rule: use them as little as possible.
Code used in examples:
package main
import (
"fmt"
)
var (
SomeFunc = func(i int) int {
return i * 2
}
)
func main() {
fmt.Println(SomeFunc(2)) // output 4
reassign()
fmt.Println(SomeFunc(2)) // output 8
shadowReassign()
fmt.Println(SomeFunc(2)) // output 2
}
// global function
func reassign() {
// assign new function to the global var. Function types MUST match
SomeFunc = func(i int) int {
return i * 4
}
}
// assign function to local reassign variable
func shadowReassign() {
reassign := func() {
// same as global reassign
SomeFunc = func(i int) int {
return i
}
}
reassign()
}