I was under the impression that the assignment to entry in nil map error would only happen if we would want to assign to a double map, that is, when a map on a deeper level is trying to be assigned while the higher one doesn't exist, e.g.:
var mm map[int]map[int]int
mm[1][2] = 3
But it also happens for a simple map (though with struct as a key):
package main
import "fmt"
type COO struct {
x int
y int
}
var neighbours map[COO][]COO
func main() {
for i := 0; i < 30; i++ {
for j := 0; j < 20; j++ {
var buds []COO
if i < 29 {
buds = append(buds, COO{x: i + 1, y: j})
}
if i > 0 {
buds = append(buds, COO{x: i - 1, y: j})
}
if j < 19 {
buds = append(buds, COO{x: i, y: j + 1})
}
if j > 0 {
buds = append(buds, COO{x: i, y: j - 1})
}
neighbours[COO{x: i, y: j}] = buds // <--- yields error
}
}
fmt.Println(neighbours)
}
What could be wrong?
You need to initialize neighbours: var neighbours = make(map[COO][]COO)
See the second section in: https://blog.golang.org/go-maps-in-action
You'll get a panic whenever you try to insert a value into a map that hasn't been initialized.
In Golang, everything is initialized to a zero value
, it's the default value for uninitialized variables.
So, as it has been conceived, a map's zero value is nil. When trying to use an non-initialized map, it panics. (Kind of a null pointer exception)
Sometimes it can be useful, because if you know the zero value of something you don't have to initialize it explicitly:
var str string
str += "42"
fmt.Println(str)
// 42 ; A string zero value is ""
var i int
i++
fmt.Println(i)
// 1 ; An int zero value is 0
var b bool
b = !b
fmt.Println(b)
// true ; A bool zero value is false
If you have a Java background, that's the same thing: primitive types have a default value and objects are initialized to null;
Now, for more complex types like chan
and map
, the zero value is nil
, that's why you have to use make
to instantiate them. Pointers also have a nil zero value. The case of arrays and slice is a bit more tricky:
var a [2]int
fmt.Println(a)
// [0 0]
var b []int
fmt.Println(b)
// [] ; initialized to an empty slice
The compiler knows the length of the array (it cannot be changed) and its type, so it can already instantiate the right amount of memory. All of the values are initialized to their zero value (unlike C where you can have anything inside your array). For the slice, it is initialized to the empty slice []
, so you can use append
normally.
Now, for structs, it is the same as for arrays. Go creates a struct with all its fields initialized to zero values. It makes a deep initialization, example here:
type Point struct {
x int
y int
}
type Line struct {
a Point
b Point
}
func main() {
var line Line
// the %#v format prints Golang's deep representation of a value
fmt.Printf("%#v
", line)
}
// main.Line{a:main.Point{x:0, y:0}, b:main.Point{x:0, y:0}}
Finally, the interface
and func
types are also initialized to nil.
That's really all there is to it. When working with complex types, you just have to remember to initialize them. The only exception is for arrays because you can't do make([2]int)
.
In your case, you have map of slice, so you need at least two steps to put something inside: Initialize the nested slice, and initialize the first map:
var buds []COO
neighbours := make(map[COO][]COO)
neighbours[COO{}] = buds
// alternative (shorter)
neighbours := make(map[COO][]COO)
// You have to use equal here because the type of neighbours[0] is known
neighbours[COO{}] = make([]COO, 0)